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Abstract

We study the post-critical behavior of a perturbed bistable Hamiltonian system to which the Melnikov approach is
applicable under the assumption that the perturbation is asymptotically small. We examine the case of perturbations that are
sufficiently large to cause chaotic transport between phase space regions associated with the system’s potential wells. The
main results are: (1) a small additional harmonic excitation can cause substantial changes in the system’s mean residence
time, and (2) the dependence of the magnitude of these changes on the additional excitation’s frequency is similar to the
dependence on frequency of the system’s Melnikov scale factor. We discuss the relevance of these results to the design
of efficient, Melnikov-based open loop controls aimed at increasing the mean residence time for the stochastically excited

counterpart of the system.

Crisis-induced intermittency may be observed in a
dynamical system when a control parameter A has a
critical value Ag. For A < Ap two coexisting chaotic
attractors exist, while for A > Ag the two attractors
are merged into one large attractor. Following a crisis,
an endless sequence of alternating excursions to the
regions previously occupied by the two attractors is
characterized by the probability distribution

P(t) = Pye™'/", (1)

where P (1) denotes the probability of observing an
excursion of duration ¢ or longer, and 7 is the mean
residence time inside a particular region [1,2]. The
time 7 depends on the control parameter A > Ay,

T(A) ~ (A=) 72, (2)
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where § may be expressed as a function of the eigen-
values associated with the unstable periodic orbit re-
sponsible for the crisis [ 1]. However, these useful re-
lations do not predict the parameter values for which
one can expect post-critical behavior.

For a wide class of nonlinear systems a necessary
condition for crisis occurrence may be formulated in
terms of the Melnikov function [3-5]. One example
on which we focus for definiteness is the Duffing-
Holmes equation

X(t) = F(x,x,1), (3)
where
F(x,%,1) =0.5x — 0.5x — yi + Asin(£2r).  (4)

In the absence of perturbation (v = A = 0) the system
has two homoclinic loops originating from the point
(x,%) = (0,0). In accordance with Melnikov theory,
an endless sequence of jumps between the regions of
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x(t) > 0 and x(¢) < O - i.e., steady-state chaotic
transport across a pseudoseparatrix [5] - is possible
only if the Melnikov function

M(to,1) = —V/By+2mAS(2) sin[2(ro+1)]  (5)

has simple zeros; in Eq. (5) S(42) is the Melnikov
scale factor (i.e., the modulus of the Fourier trans-
form of x(—t), where x(—t) is the ordinate of the ho-
moclinic orbit in the phase plane [x{(#), ()] [6]),
and #g is related to the initial phase of the sinusoidal
forcing. The derivation of this necessary condition is
based on the assumption that the system’s perturba-
tion is asymptotically small (y — 0 and A — 0);
strictly speaking, it is valid only if this assumption
holds. However, there is numerical evidence that Mel-
nikov theory is helpful in the search for chaos even
for relatively large perturbations [7,8]. In this Letter
we show that, for relatively large perturbations, Mel-
nikov theory also has a useful role in describing the
effect of additional small perturbations on the mean
residence time.

We consider the case A = Ap + AA, AA > 0 and
AM/Ap < 1, ie., A is close to and larger than its
critical value. The mean residence time 7 is therefore
large, see Eq. (2). We now add to the system a second
harmonic perturbation of amplitude A and frequency
w. The equation of motion is then

i)y =F(x,x,t) + Asin(wr1), (6)

while the corresponding Melnikov function is given
by

M(tor, to2, 1) = —3V8y+2m{AS(£2) sin{ 2(t+10) )
+ AS(w) sin[w(t + to2) 1} (N

We integrate Eq. (5) numerically and obtain the mean
residence time 7 as a function of @ for fixed vy, £2 and
A A, and various values of the amplitude A.

The main result of this Letter is that the addition
of a second small harmonic perturbation may change
7 drastically, and that the dependence of this change
on the frequency w is similar to the dependence on w
of the Melnikov scale factor. For example, additional
forcing with amplitude A ~ 0.02A may reduce the
mean residence time by a factor of two or more for
sufficiently small AA. Later in this work we discuss
how this result may help to perform an efficient control
of the stochastically excited nonlinear oscillator.
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Fig. 1. Schematic evolution of chaotic transients observed before
crisis. For another initial point a trajectory may approach the
second coexisting attractor with x(¢) > 0.

Before presenting the results obtained for A > Ap
and A > 0, we wish to describe the behavior of the os-
cillator excited by just one harmonic term for A < Ag
and A = 0. A study of this case is essential for under-
standing crisis-induced intermittency observed in the
system. We let £2 = 0.89, v = 0.045. For these param-
eters the crisis occurs for Ag = 0.114358.... For A
close to and smaller than the critical value (e.g., A} =
0.1142) the system has three coexisting attractors: one
periodic and two chaotic. Of the two chaotic attrac-
tors, one is confined to the region of exclusively posi-
tive, and the other to the region of exclusively negative
values of x(#). Starting from an initial point xp be-
longing to the basin of attraction of one of the chaotic
attractors, a trajectory will eventually settle on that
attractor. Before this occurs one may observe a long
chaotic transient of duration Tp. During this transient
a trajectory alternates between the regions of positive
and negative x(¢), see Fig. 1. The duration of a par-
ticular transient, Ty and a particular sequence of time
intervals 7,7, , ..., depend strongly on xo. Starting
from many initial points xo we can determine the dis-
tributions P(7y) and P(t). (Owing to the symmetry
of the potential, P(¢t) = P(¢7).) The results of the
simulations are shown in Fig. 2. Note that the distri-
bution P(Tp) has a simple exponential form with very
long mean lifetime 79 = 1454 . On the other hand, the
distribution of the residence time P(t) is a superposi-
tion of two different exponential decays: a faster decay
characterized by 71 = 19.1, and a slower decay with
79 = 54.8 . Here, 71 and 7, denote the inverse slopes
of straight lines, the two lines being fitted separately
in two adjacent ranges of 1.
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Fig. 2. (a) Distribution of transient times Ty for A = A;; (b) distribution of residence times  for A = Ay; corresponding distributions
obtained for A = Ay are shown in (c) and (d). Each distribution was generated by integrating Eq. (3) for Np = 2 x 10° uniformly

distributed initial points (xg, X¢).

Transient chaos and exponential distributions of
lifetimes are usually caused by the existence of a
nonattracting chaotic set. A well known example of
such a set is a fractal basin boundary or a strange
repellor which is a remnant of a chaotic attractor de-
stroyed in a crisis [9]. In our case, for A; < Ag the
repellors are not yet born and the only nonattracting
sets are three different basin boundaries (recall that
for A = A; there are three coexisting attractors). A
distribution such as that shown in Fig. 2b must be
associated with the complicated structure of three
coexisting nonattracting sets. To lend support to this
hypothesis we repeat the numerical simulations for
a smaller amplitude Ay = 0.08. For this value of the
control parameter there are only two coexisting peri-
odic attractors (they are precursors of the two chaotic
attractors that exist for A;). Thus, for A = Ay there
is only one nonattracting chaotic set, i.e. a boundary
separating two basins. The distribution of the resi-
dence time, P(t), is shown in Fig. 2d and it has a
simple exponential form with mean residence time
71 = 14.8 (compare with 7, in Fig. 2b). Note that the
distribution P(Tp) shown in Fig. 2c is again a simple
exponential, but the mean lifetime 79 = 199 is nearly
ten times smaller than the corresponding 7o in Fig. 2a.

Keeping these facts in mind we are now ready to
analyze post-critical behavior of the Duffing-Holmes
oscillator. When A becomes larger than Ag two chaotic
attractors are destroyed and replaced by two repellors
characterized by a finite mean lifetime. Thus, together
with the three nonattracting sets that existed before the
crisis, we have now five coexisting repulsing sets and
the behavior of the system is more complicated. Such
behavior may be viewed as an example of multitran-
sient chaos [10]. In Fig. 3a the resulting distribution
of the residence time, P (1), is shown for A= Ap+AA
and AA = 2x 10™*, Three independent straight line fits
yield the value of 7y = 13.3, 7 = 54.4, and 73 = 208.3.
The last straight line slope depends sensitively on AA,
see Eq. (2), while the first two are nearly independent
of A and are very close to the values obtained from the
data shown in Figs. 2b and 2d. We remark that after
the crisis we have only two coexisting attractors: the
large chaotic attractor and the simple periodic attrac-
tor. Thus, the number of basin boundaries is reduced
by the crisis from three to one. However, the nonat-
tracting sets existing for A < Ag do not vanish. They
remain nearly unaffected by the crisis and reveal their
presence either as a part of a new basin boundary or
as a part of a new large chaotic attractor [11].
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Fig. 3. Distribution of residence times ¢ obtained for A = Ay + AA from one long stationary trajectory. (a) Without additional perturbation,
ie. A = 0; with added second harmonic perturbation of amplitude A and frequency w: (b) A = 2.5AA, @ = 0.8455; (c) A = 2044,
w =1.2905; (d) A = 160AA, w = 0.6230. In each case a length of trajectory was N = 1.5 x 106AT where AT = 277/42 is the period of

harmonic excitation with amplitude A.
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Fig. 4. Dependence of mean residence time 7 on frequency @ for three different amplitudes A: (a) A = 2.5AX; (b) A = 20AX; (c¢)
A = 160AA.
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Fig. 5. Inverse of Melnikov scale factor S(w), see Eqs. (3), (4) with y = A =0. §(w) approaches zero as @ — 0 or @ — oo.

Now, we switch on a second harmonic excitation
of amplitude A and frequency w. We wish to investi-
gate the influence of this additional term on the crisis-
induced intermittency observed for A = Ag + AA. We
show in Figs. 3b, 3c and 3d examples of residence time
distribution P(t) obtained for different values of A
and w. It is clear that the effectiveness of this new per-
turbation depends strongly on both amplitude A and
frequency w. For example, in Fig. 3b the additional
perturbation caused the slowest decay to be modified
slightly while in Fig. 3d it destroyed the two slower
decays and only the fastest decay survived. In order to
make our investigation more systematic, we keep the
amplitude A fixed and change the frequency @ within
a certain interval. For each w we obtain the distribu-
tion P(t), perform appropriate straight line fits, and
calculate the mean residence time 7(w). In Fig. 4 the
resulting dependence 7(w) is shown for three differ-
ent values of the amplitude A. For any given ampli-
tude A the mean residence time and the inverse of the
Melnikov scale factor exhibit remarkably similar de-
pendences on w, see Fig. 5. Moreover, as shown by
Fig. 4, the mean residence time decreases monotoni-
cally (i.e., the system becomes increasingly chaotic)
as the amplitude A increases.

We found that for fixed A the shape of the dis-
tribution P(#) changes in accordance with a well-
defined pattern. For small w all three types of decay are

present. As the frequency w gradually increases, the
slowest decay is destroyed first, and the intermediate
decay is destroyed next. Further increasing w brings
the intermediate decay back into existence, and then
the slowest decay is aiso restored. We never observed
a deviation from this regular pattern.

To summarize our observations: given a system with
relatively large perturbation, (1) the addition of a
small harmonic excitation can significantly influence
the system’s mean residence time, and (2) the depen-
dence of that influence on the excitation’s frequency
is similar to the dependence on frequency of the Mel-
nikov scale factor.

These observations have potential application to
the control of nonlinear stochastically excited sys-
tems to which Melnikov theory is applicable — a wide
class of systems is discussed in some detail elsewhere
[6,12]. The objective of the control system would be
to decrease substantially the mean escape rate from
a “safe” region of phase space. Our results suggest
that such a result could be achieved by an open loop
control system with a relatively small control force
that would counteract the stochastic excitation (i.e.,
whose Fourier transform components would reduce
their counterparts in the Fourier transform of the ex-
citation). To keep the power requirements as low as
possible, the control force would be obtained from the
stochastic excitation via a filter designed to reduce or
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eliminate ineffective Fourier transform components
of the control, that is, components corresponding to
frequencies for which the Melnikov scale factor is
small. The results presented in this Letter are a pre-
liminary step in a study of Melnikov-based controls
currently conducted by the authors.
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